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How much technological progress has there been in structures? An attempt is
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1. INTRODUCTION

How much technological progress has there been in structures? “Not
much,” is often the answer. Perhaps this answer should be reconsidered;
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as each decade passes new peaks are reached in building airports, bridges,
dams, highways, oil platforms, sea barriers, skyscrapers, stadiums, towers,
and tunnels. Moreover, as new technology enables these advances, in-
creased output per square foot of utilized land is realized due to benefits
such as faster and better transportation and higher productivity resulting
from more and better work space. Some examples may be in order to
illustrate this claim.

Skyscrapers

The Home Insurance Building is generally considered to be the world’s
first skyscraper. Built in Chicago in 1885 it was 10 stories tall. Compare
this with Chicago’s 110-story Sears Towers, completed in 1974. In less
than 100 years the tallest building went from 10 to 110 floors. The 443 m
Sears Towers now play second fiddle to the 452 m Petronas Twin Towers
in Kuala Lumpur built in 1997. The increase in building height reflects
significant advances in engineering. While the Sears Towers are 200 ft
taller than the Empire State Building (circa 1931), they weigh much less,
223,000 tons versus 365,000—a testimonial to better materials and design.
Providing comfort to the occupants of a skyscraper is a major concern.
For instance, the 29th floor in a Sears Tower is taken up by five chillers
that cool the air in the building. Three of these weigh 5000 tons a piece.
Water that has been used in the chillers is pumped up 77 floors to four
three-story high cooling towers located on levels 106–109. As the water
cascades down the walls of the towers it is cooled by huge fans. The tops
of tall buildings are also subject to substantial movement from wind, caus-
ing motion sickness of the occupants. To prevent this, two tuned dynamic
dampers were installed in Boston’s Hancock Tower (1969). Here, two three
ton masses of lead are set on thin layers of oil on opposite ends of the
59th floor of the tower. They are connected to the structure with springs
and shock absorbers. These dampers serve to mitigate the sway in the
tower.

Suspension Bridges

The Brooklyn Bridge was a technological marvel when it opened in 1883.
Its center span is 486 m long. Contrast this to Japan’s Akashi Kaikyo Bridge,
opening in 1998, which has a center span 1990 m long. The Messina Bridge
planned for the year 2006 will connect mainland Italy with Sicily and will
have a central span of 3300 m. Long suspension bridges are very suscep-
tible to the vicissitudes of nature, especially wind and water. Wind-excited
vibrations at the natural frequency of the structure caused the collapse of
the Tacoma Narrows suspension bridge in Puget Sound in 1940. To pro-
tect against oscillations, tuned mass dampers were added to the towers of



technological progress 209

Akashi Kaikyo Bridge, the first such use in a bridge. These devices contain
pendulums that rock in a direction opposite to the towers, thus damping
motion. This, together with other innovations, should allow the bridge to
withstand winds up to 290 km per hour.

Tunnels

The world’s longest railway tunnel spans the Tsugaru Straits in Japan.
Completed in 1988, it is 34 miles long and was dug through some of the
most difficult rock ever encountered. The rock under the Tsugaru Straits
is porous and unstable, permitting large water flows. So, before tunnelling,
the rock had to be prepared. The fissures in the rock were sealed by pump-
ing, under high pressure, a mixture of cement and a gelling agent into small
holes that were drilled into the rock. Digging tunnels under water is dan-
gerous. Once, during construction, water flooded in at a rate of 80 tons per
minute, which forced a rapid evacuation. Even today, after the tunnel has
been lined, without the aid of four pumping stations it would flood within
78 h. Tunnelling has come a long way from the world’s first railway tunnel,
the 12.3 mile Simplon Tunnel built through the Alps between France and
Italy, which opened in 1871.

Oil Platforms

At 630 ft tall and 824,000 metric tons an oil platform was the heaviest
manmade object ever moved when it was hauled out to sea in 1981. This
platform is taller than the United Nations Building and three times heavier
than the World Trade Center. The Statfjord B oil platform was a mammoth
undertaking. One hundred miles from shore with 200 people aboard, it
needs to be able to withstand the worst of weather. In waves of 100 ft and
in wind of 100 mph it is designed to shift less than 1

2 in. It can produce
150,000 barrels of oil a day.

The Analysis

So again, how much technological progress has there been in structures?
The answer here is that the rate of technological progress in structures
is about 1% per year and accounts for 15% of economic growth. The
method of estimating technological progress employed here differs signif-
icantly from current growth accounting practice. In particular, a vintage
capital model is developed where technological progress is embodied in
the form of new capital goods, namely, equipment and structures. Pro-
duction in the economy is undertaken at a fixed number of locations,
each using equipment, structures, and labor. Investment in structures is
assumed to be lumpy. Once a building is erected on a site it remains
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there until torn down and replaced with a new and improved one. The
decision about when to replace a building is modeled in the analysis.
In equilibrium some sites will have new, efficient buildings and others
old, less efficient ones. Equipment and labor are mobile across sites. By
using the structure of the developed model, in conjunction with some
observations from the U.S. data, an estimate of the rate of technologi-
cal progress in structures and its contribution to economic growth can be
made.

A novel aspect of the analysis relative to traditional growth account-
ing is the use of price data to shed information on technological progress.
Gordon’s (1990) data on the price for new producer durable equipment
shows that there has been a substantial secular decline in the relative price
of new equipment over the postwar period.1 In constructing his price in-
dex, Gordon (1990) attempts to control for the operating characteristics of
equipment that are important for production. This suggests that there has
been significant technological progress in the production of new equipment.
There is no similar series available for new structures.

To the extent that new office buildings have new and improved technol-
ogy embodied in their structures, they should rent for more than old ones,
ceteris paribus. A panel data set of office buildings is used in the current
analysis to estimate the rent gradient for buildings (as a function of age). A
key assumption in the analysis is that buildings are continually kept in good
repair. This allows the decline in rents with age to be identified solely with
technological advance, and not with wear and tear as well. To the extent
that buildings must be kept in good repair either because of building codes
or rental contracts this assumption may not be that stringent. The rent gra-
dient obtained is then connected with the rate of technological progress in
structures by using various equilibrium conditions arising from the vintage
capital model.

Contrast this with conventional growth accounting. There an aggregate
production function and input measures are used to decompose growth into
technological progress and changes in inputs. In a world where technologi-
cal progress is embodied in the form of new equipment and structures the
use of standard national income account capital input measures becomes
suspect. They are avoided here. Also, conventional growth accounting is in-
complete because it does not allow for the growth in output due to capital
accumulation to be broken down into its underlying sources of technolog-
ical progress. The analysis here takes this factor into account by imposing
balanced growth conditions on the developed model.

1Here the analysis follows the lead of Greenwood, Hercowitz, and Krusell (1997), who
use Gordon’s (1990) prices to calculate how much of postwar economic growth was due to
equipment-specific technological progress.
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2. THEORY

2.1. Environment

Production is undertaken at a fixed number of locations, distributed uni-
formly on the unit interval, and requires the use of three inputs: equipment,
structures, and labor. Each location has associated with it a stock of struc-
tures of a certain age or vintage: The manager of a location must decide at
each point in time whether to replace this stock of structures or not. Equip-
ment and labor can be hired each period on a spot market. Let production
at a location using structures of vintage j be given by

o�j� = zke�j�αeks�j�αs l�j�β; (2.1)

where z is the economywide level of total factor productivity and ke�j�,
ks�j�, and l�j� are the inputs of equipment, structures, and labor. Denote
the number of locations using structures of vintage j by n�j� and let the
oldest age of structures be T . Then

∫ T
0 n�j�dj = 1. Aggregate output is thus

y =
∫ T

0
n�j�zke�j�αeks�j�αs l�j�β dj: (2.2)

Output can be used for four purposes: consumption, c, investment in new
equipment, ie, investment in new structures, is, and for investment in repair
and maintenance on old structures, im. Hence

c + ie + is + im = y: (2.3)

Equipment is mobile and can be freely rented on an economywide equip-
ment market. The law of motion for equipment has the form2

dke

dt
= −δeke + qie: (2.4)

The variable q represents equipment-specific technological progress. This
occurs over time at rate γq. As q increases over time a unit of forgone
consumption can purchase ever-increasing quantities of equipment. Here
1/q can be thought of as the relative price of equipment. This price declines
over time. The rate of physical depreciation on equipment is δe.

Imagine constructing a new building at some location. Suppose that a
unit of forgone consumption can purchase v new units of structures. Then,

2Greenwood, Hercowitz, and Krusell (1997) use this formulation to study investment-
specific technological progress. A more detailed discussion on the notion of investment-specific
technological advance is contained there.
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building ks�0� units of new structures would cost ks�0�/v units of consump-
tion. Let v grow at the fixed rate γv; this denotes structure-specific tech-
nological progress.3 Aggregate gross investment in structures will therefore
read

is = n�0�ks�0�/v: (2.5)

Structures remain standing until they are replaced. Structures suffer no
physical depreciation, since they must be perfectly maintained. Let the ini-
tial maintenance cost be a fraction µ�0� of the building’s purchase price.
These costs grow exogenously at rate γµ + γy as the building ages, where
γy is the economy’s growth rate. Therefore, µ�j� = e�γµ+γy�j . Aggregate
investment in repair and maintenance is4

im =
∫ T

0
n�j�µ�j�ks�j�/�ve−γvj�dj:

The question of interest here is when should a building be replaced?

2.2. The Location Manager’s Decision

2.2.1. Static Profit Maximization

At a point in time the manager of a location should hire equipment
and labor to maximize the location’s profits, given his stock of structures.
Consider the static profit-maximizing decision at a location using vintage-j
structures:

π�j� = max
ke�j�;l�j�

�zke�j�αeks�j�αs l�j�β − reke�j� − wl�j��; �P1�

where re is the economywide rental price for equipment and w is the wage
rate. The first-order conditions are

αezke�j�αe−1ks�j�αs l�j�β = re (2.6)

and

βzke�j�αeks�j�αs l�j�β−1 = w: (2.7)

By multiplying (2.6) by ke�j� and (2.7) by l�j� it is easy to establish from
(P1) that

π�j� = �1− αe − β�zke�j�αeks�j�αs l�j�β:

3The focus of the analysis is on balanced growth paths. So, some variables, such as aggregate
output, will grow over time at constant rates, while others, for instance the interest rate, will
be constant.

4Note that 1/�ve−γvj� is the price that a unit of structures cost j periods ago.
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Next, observe that (2.6) and (2.7) imply that

ke�j� =
αe

β

w

re
l�j� (2.8)

and

l�j� =
[
β1−αeα

αe
e z�1/re�αeks�j�αs

w1−αe

]1/�1−αe−β�
; (2.9)

so that rents at a point in time (the return to the fixed factor, here land)
can be expressed as

π�j� = �1− αe − β�z1/�1−αe−β�ααe/�1−αe−β�
e ββ/�1−αe−β�

× r−αe/�1−αe−β�
e w−β/�1−αe−β�ks�j�αs/�1−αe−β�:

(2.10)

The profits from each location, net of any repair and maintenance costs
and investment in structures, are rebated to consumers each period.

2.2.2. The Replacement Problem

When should the manager of a location replace the structures on his site?
Suppose that at date 0 the manager has ks; 0�0� units of new structures.5

At what date T should he replace his building and how much should his
investment in new structures, ks; T �0�, be at that time? Clearly, he should
choose these variables to maximize the value of the location as denoted by
V �ks; 0�0��. The manager’s date-0 problem can be written as

V �ks;0�0�� = max
ks; T �0�; T

{∫ T
0
�πt�t� − µ�t�ks; 0�0�/v0�e−ιt dt

+ e−ιT �V �ks; T �0�� − ks; T �0�/vT �
}
;

�P2�

where ι represents the time-invariant interest rate. The solution dictates
that[

πT �T � − µ�T �ks; 0�0�/v0
]− ι[V �ks; T �0�� − ks; T �0�/vT

] = 0 (2.11)

and

Vks
�ks; T �0�� = 1/vT : (2.12)

5Time is indicated by subscripts. So for example, ks; t�j� indicates the amount of age-j
structures at time t.
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2.3. Equipment Rentals

At each point in time the equipment manager has ke units of equipment
that he can rent out at re. He must decide how much to invest, ie, in new
equipment. This investment can be financed at the fixed interest rate ι.
The optimal control problem governing the accumulation of equipment is
summarized by the current-value Hamiltonian and its associated efficiency
conditions:

H = reke − ie + λ�ieq− δeke�;
Hie = −1+ λq = 0; (2.13)

and

dλ/dt = ιλ− Hke
= ιλ− re + λδe: (2.14)

Observe from (2.13) that γλ = −γq so that (2.14) can be expressed as

re = �ι+ δe + γq�/q: (2.15)

This gives the rental price for equipment. This formula has a simple inter-
pretation. A unit of forgone consumption can purchase q units of equip-
ment that will rent for req. This rental income must cover the forgone
interest, ι, physical depreciation, δe, and the capital loss, γq, induced by
the fact the price of equipment (in terms of consumption) is falling across
time.6

2.4. The Representative Consumer’s Problem

Let a consumer’s lifetime utility function be given by∫ ∞
0

ln cte
−ρt dt:

Now, the consumer is free to lend in terms of bonds, a, earning the return
ι. In addition to the interest he realizes on his lending activity, the con-
sumer earns labor income, w, and the profits from his locations (net of any
repair and maintenance costs and investment in structures),

∫ T
0 n�j��π�j� −

µ�j�ks�j�eγvj/v�dj − n�0�ks�0�/v. The law of motion governing his asset
accumulation reads

da/dt = w + ιa+
∫ T

0
n�j��π�j� − µ�j�ks�j�eγvj/v�dj − n�0�ks�0�/v − c:

The efficiency condition governing asset accumulation is

1
c

dc

dt
= �ι− ρ�; (2.16)

6A unit of equipment sells for 1/q units of consumption, and this price is falling over time
at rate γq.
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which states the familiar condition that consumption should grow at the
rate at which the interest rate exceeds the rate of time preference.

2.5. Market Clearing Conditions

At each point in time the markets for labor and bonds must clear [in
addition to the goods market as represented by (2.3)]. Consequently,∫ T

0
n�j�l�j�dj = 1; (2.17)∫ T

0
n�j�ke�j�dj = qa:

2.6. Balanced Growth

The balanced growth path will be uncovered using a guess and verify
procedure. To this end, conjecture that along a balanced growth path con-
sumption, investment in equipment and structures, aggregate output, and
the stocks of equipment and structures at a location of any given age will
all be growing at constant rates. Likewise, it seems reasonable to believe
that the age distribution of structures and the amount of labor allocated to
an age-j location will be constant through time. If so, Eq. (2.2) then implies
that along a balanced growth path output will grow at rate

γy = γz + αeγe + αsγs; (2.18)

where γy ≡ �1/y�dy/dt, γz ≡ �1/z�dz/dt, γe ≡ �1/ke�j��dke�j�/dt, and
γs ≡ �1/ks�j��dks�j�/dt. Additionally, from the resource constraint (2.3),
consumption, equipment investment, structure investment, and mainte-
nance investment will all need to grow at the same rate as output or would
disappear relative to output. Consumption growing at the fixed rate γy
requires that the interest rate remains constant at

ι = ρ+ γy; (2.19)

a fact evident from (2.16).
Next, note that the law of motion for equipment in balanced growth reads

γe = −δe +
qie
ke
:

Thus, γe can be constant if and only if qie/ke is too. This can only be true
when

γe = γq + γy: (2.20)

Analogously, is/y = �n�0�ks�0�/v�/y can only remain fixed if

γs = γv + γy; (2.21)

where, as must be obvious by now, γq ≡ �1/q�dq/dt and γv ≡ �1/v�dv/dt.
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The rate of growth in output, as a function of the underlying sources
of technological progress, can now be uncovered by substituting (2.20) and
(2.21) into (2.18) to obtain

γy =
1

1− αe − αs
γz +

αe

1− αe − αs
γq +

αs

1− αe − αs
γv: (2.22)

In turn, using this in (2.20) and (2.21) gives

γe =
1

1− αe − αs
γz +

1− αs

1− αe − αs
γq +

αs

1− αe − αs
γv (2.23)

and

γs =
1

1− αe − αs
γz +

αe

1− αe − αs
γq +

1− αe

1− αe − αs
γv: (2.24)

Equation (2.22) is the key for opening the door to growth accounting. Not
surprisingly, the contribution of equipment-specific technological progress
to economic growth will be larger the bigger is equipment’s share of income,
αe, relative to that of the nonreproducible factors, 1− αe − αs. The contri-
bution of structure-specific technological progress to growth depends in a
similar way on structure’s share of income, αs. Observe that stocks of equip-
ment and structures grow at a faster rate than output, since αe < 1 − αs
and αs < 1− αe.

Next, it is easy deduce from (2.15) and (2.7) that the factor prices re and
w will grow at rates

γre = −γq
and

γw = γy:

By using the above two conditions, in conjunction with (2.22), in (2.10),
it is easy to show that when the stock of structures is held fixed, profits on a
building will rise over time at rate

γπ =
(

1− αe − αs − β
1− αe − β

)(
1

1− αe − αs

)
γz

+
(

1− αe − αs − β
1− αe − β

)(
αe

1− αe − αs

)
γq

−
(

β

1− αe − β
)(

αs

1− αe − αs

)
γv

< γy:

(2.25)
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FIG. 1. Rent gradient.

Observe that profits grow at a rate less than output. This, together with
rising maintenance costs, motivates the replacement of buildings. The loca-
tion manager’s replacement decision is driven by the lure of profits. For a
given stock of structures, profits are forever being squeezed by rising labor
costs. To increase these dwindling profits the manager must replace his old
structure with a new and improved building.

Now, consider the economy’s cross section of buildings at a point in time.
It is easy to calculate from (2.10) that the percentage change in rents as a
function of age, or the rent gradient δs, should be given by

δs = −
αs

1− αe − β
γs; (2.26)

since the stock of structures declines at rate γs as a function of age (while
factor prices remain constant). This formula plays a starring role in the
analysis. It is a measure of obsolescence in buildings. In the absence of
depreciation, a new building rents for more than an old one only because
it offers more efficiency units of structures. Figure 1 plots the rent gradient
as derived from (2.10).7 As can be seen, at a moment in time rents are a

7The figure uses the calibration discussed in Section 3.
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decreasing function of a building’s age. The rent gradient shifts out over
time due to growth in the economy.

Along a balanced growth path the profits of an age-j building will grow
at rate γy , a fact readily apparent from (2.10). Since T is constant it
then follows that V �ks; 0�0�� = e−γyT V �ks; T �0��. Furthermore, note that
ks; 0�0�/v0 = e−γyTks; T �0�/vT . This allows the first-order condition (2.11)
to be written as

�eγπTπ0�0� − e�γµ+γy�Tµ�0�ks; 0�0�/v0�
− ιeγyT �V �ks; 0�0�� − ks; 0�0�/v0� = 0;

(2.27)

where everything has now been expressed in terms of date-0 values. From
(P2) it is easy to calculate that

V �ks; 0�0�� =
π0�0�

∫ T
0 e
−�ι−γπ�t dt − µ�0��ks; 0�0�/v0�

∫ T
0 e
−�ι−γµ−γy�t dt

1− e−�ι−γy�T

− e
−�ι−γy�Tks; 0�0�/v0

1− e−�ι−γy�T

= π0�0��1− e−�ι−γπ�T �/�ι− γπ�
1− e−�ι−γy�T

− e
−�ι−γy�Tks; 0�0�/v0

1− e−�ι−γy�T

− µ�0��ks; 0�0�/v0��1− e−�ι−γµ−γy�T �/�ι− γµ − γy�
1− e−�ι−γy�T :

(2.28)

Likewise, from (P2) it is easy to see that in balanced growth

Vks
�ks; 0�0�� =

�1− e−�ι−γπ�T �πks; 0
�0�

�ι− γπ�
− �1− e

−�ι−γµ−γy�T �µ�0�
�ι− γµ − γy�

; (2.29)

where

πks; 0
�0� = αsz

1/�1−αe−β�ααe/�1−αe−β�
e ββ/�1−αe−β�r−αe/�1−αe−β�

e; 0

×w−β/�1−αe−β�
0 ks; 0�0��αe+αs+β−1�/�1−αe−β�;

(2.30)

so that the first-order condition will read

Vks
�ks; 0�0�� = 1/v0: (2.31)

The model is almost complete except that the date-0 market clearing
wage rate needs to be computed. The age distribution of structures over lo-
cations will be uniformly distributed on the interval �0; T �. The labor market
clearing condition (2.17) can accordingly be rewritten as �1/T � ∫ T0 l�j�dj =
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1: Substituting (2.9) into this condition and using the fact that ks; 0�j� =
ks; 0�0�e−γsj yields

w0 =
[
β1−αeα

αe
e z0

(
1
re; 0

)αe

ks; 0�0�αs

]1/�1−αe�

×
[

1− e−Tαsγs/�1−αe−β�

Tαsγs/�1− αe − β�
]�1−αe−β�/�1−αe�

:

(2.32)

The solution to the model’s balanced growth path is now completely
characterized. To see this note that Eqs. (2.10), (2.15), (2.19), (2.22), (2.24),
and (2.27)–(2.32) represent a system of 11 equations in the 11 unknowns
π0�0�, ι, re; 0, γy , γs, T , V �ks; 0�0��, Vks

�ks; 0�0��, πks; 0
�0�, ks; 0�0�, and w0.8

Last, it was stated that the replacement of structures was driven by the
lure for profits. For a given stock of structures, profits are squeezed over
time for two reasons: rising real wages and maintenance costs. To see the
important role that profits play in replacement, assume that there are no
profits, because production is governed by constant returns to scale, and
that buildings can be maintained cost-free. It is easy to deduce that in this
situation structures will never be replaced.

Proposition 2.1 (No replacement). If αe + αs + β = 1 and µ�0� = 0
then T = ∞.

Proof. Observe that in this situation πks; 0
�0�ks; 0�0� = π0�0�, since

1 − αe − β = αs. Using (2.28) and (2.29) this then implies that
Vks
�ks; 0�0��ks; 0�0� = V �ks; 0�0�� so that V �ks; 0�0�� = ks; 0�0�/v0. The

right-hand side of (2.27) will therefore always be strictly positive so that
there does not exist a finite T satisfying this equation. Hence, on a balanced
growth path it must transpire that T = ∞.

3. MEASUREMENT

3.1. Estimation

There are three parameters that need to be estimated—the rent gradient,
δs, maintenance costs to rents for newer buildings, φ, and the growth rate
in maintenance costs, γµ. To do this, data was obtained from the Building
Owners and Managers Association International (BOMA). The data used
for the estimation are based on a panel covering approximately 200 office
buildings across the United States from 1988 to 1996.9 The data set includes

8Equations (2.10) and (2.15) at time zero read π0�j� = �1− αe − β�z1/�1−αe−β�
0 α

αe/�1−αe−β�
e ·

ββ/�1−αe−β�r
−αe/�1−αe−β�
e; 0 w

−β/�1−αe−β�
0 ks; 0�j�αs/�1−αe−β� and re; 0 = �ι+ δe + γq�/q0.

9These data were assembled by BOMA International with the names and addresses
removed.
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TABLE I

Variable Mean Std. dev. Minimum Maximum

Size (square feet) 312,403 330,065 15,683 2,529,269
Repair and main. / ft2 (1996) $1.42 $0.776 $0.353 $5.40
Rent / ft2 (1996) $15.23 $6.93 $1.52 $56.6
Age 25.9 22.2 2 128
Floors 16.0 13.4 2 80

information on age, location, size, rent, and several categories of expenses.
Clearly, office buildings are only part of the private sector’s nonresidential
stock of structures. So, hopefully the extent of technological progress in
office buildings reflects the amount of technological advance in the broader
aggregate. In any event, this is all of the data that could be found.

Summary statistics for the sample are given in Table I. The average
size building is 312,403 ft2; the smallest being 15,683 ft2 and the largest
2,529,269 ft2. The oldest building was built in 1868 and the newest in 1987.
(Each building was in every year of the 9-year sample).

Figure 2 plots the kernel estimate of (the natural logarithm of) rent per
square foot as a function of age. As can be seen in the figure, the decline
in rent is monotonic until the building is approximately 46 years old. Then

FIG. 2. Rent as a function of age.
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there is a sharp increase, returning to a monotonic decline a few years
later. This may reflect extensive remodelling or refurbishing of a building.
To the extent that this is the case, it could in essence be considered a
new or different building. Therefore, the estimating equation is based on a
restricted sample of those buildings 46 years old or younger. Figure 3 plots
the kernel estimate of (the natural logarithm of) repair and maintenance
as a function of age. Repair and maintenance costs rise over time.

Given that the data set contains observations on the same buildings over
time, an obvious choice would be to use an estimator that controls for the
building-specific effects. That is, a fixed effects estimator with buildings as
the unit of observation. Now, the rent gradient is a measure of how the
rent on a building changes as the building ages by one additional year.
However, to determine the value for the rent gradient, δs, a building fixed
effects estimator would essentially turn the age variable into a time trend
and would remove all of the cross section variation in age. This is because
as one year passes the age of the building also increases by one year.

Therefore, the specification used consists of a cross section time series
with the age of the building, total square footage, and dummy variables
for time, region, and whether the building is located downtown or in the
suburbs. If repair and maintenance expenditures counteract the effects of
physical wear and tear, then the coefficient on age in the regression captures

FIG. 3. Repair and maintenance as a function of age.
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TABLE II
Dependent Variable: ln (rent/ft)

Estimate
Variablea (std. error)

Constant 1.55
(0.133)

Age −0.015
(0.001)

Size (ft2) 0.092
(0.011)

Downtown 0.059
(0.024)

r2 0.38

aPlus time and regional dummies.

the effect of depreciation due to obsolescence alone. The results for δs are
given in Table II.

The value of φ was chosen to represent the ratio of repair and mainte-
nance to rents in newer buildings. From the data the number for buildings
5 years old or younger was calculated. The value of φ is 0.055. To obtain
a parameter estimate for γµ a similar approach was taken as for δs. The
results are reported in Table III.10

10The fact that expenditures on repair and maintenance begin to decline with age suggests
that such expenditures may be endogenous, i.e., at some point less and less is spent, and the
building is allowed to deteriorate. Therefore, the estimation is based on the sample where
expenditures are increasing, since the maintained assumption is that this is the amount it
would take to keep the building in its original condition. Note that since expenditures are
increasing over time, it costs more each year to keep up the building.

TABLE III
Dependent Variable: ln (Repair and Maintenance/ft)

Estimate
Variablea (std. error)

Constant −2.27
(0.152)

Age 0.020
(0.001)

Size (ft2) 0.155
(0.012)

Downtown 0.111
(0.028)

r2 0.45

aPlus time and regional dummies.
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3.2. Calibration

The model’s parameters are assigned either (i) on the basis of a priori
information about their values or (ii) so that the model’s balanced growth is
consistent with certain features displayed in the U.S. data over the postwar
period.11

3.2.1. A Priori Information

1. γq = 0:032. This number represents the average annual decline in
the relative price of equipment price for the postwar period based on data
taken from Gordon (1990).12

2. δe = 0:12. This is an estimate of the average depreciation rate for
equipment used in constructing NIPA’s equipment stock figures.13

3. β = 0:68. Labor’s share of income, as estimated from the NIPA
figures for the period 1959–1996. Here labor income is defined as total com-
pensation of employees in nominal terms. Income is taken to be nominal
GDP minus nominal gross housing product.

4. φ = 0:055. This is the estimate from Section 3.1.
5. γµ = 0:020. Again, as estimated from Section 3.1.

3.2.2. Restrictions on Balanced Growth

Parameter values still need to be determined for αe, αs, µ�0�, γv, γz, and
ρ. These six parameters will be pinned down using six long-run restrictions
from the data.

1. Over the postwar period 1959–1996, output per manhour worked
in the U.S. economy has grown at an average rate of 1.22%. Again, nominal
output is measured as nominal GDP minus nominal gross housing product.
Since the numeraire in the model was consumption goods, this series was
divided through by the implicit price deflator for personal consumption
expenditures on nondurables and nonhousing services. Total private sector
manhours were calculated as an annual average of average weekly hours
of total private production or nonsupervisory workers multiplied by the
number of civilians employed. If the model is to be consistent with this
fact, then

γy = 0:0122: (3.1)

11Cooley and Prescott (1995) provide a guide to calibration within the context of the stan-
dard neoclassical growth model.

12As computed by Greenwood, Hercowitz, and Krusell (1997).
13Again, as calculated by Greenwood, Hercowitz, and Krusell (1997).
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2. In the United States the ratio of the equipment investment to
GDP averaged 7.3% for the period 1959–1996. Using the law of motion
for equipment it is easy to see that in balanced growth date-0 invest-
ment in equipment is given by ie; 0 = �γy + γq + δe�ke; 0/q0. Now, from
(2.8) it is apparent that ke; 0 =

∫
n�j�ke; 0�j�dj = �αew0�/�βre; 0�

∫
l�j�dj =

�αew0�/�βre; 0� (since the supply of labor is 1). Finally, date-0 GDP is given
by w0/β. Hence, the following restriction on the model’s balanced growth
path obtains (where q0 ≡ 1):

ie
y
= αe

re; 0
= 0:073: (3.2)

3. The ratio of structure investment to GDP in the U.S. economy is
4.1% (for the 1959–1996 sample period). If this restriction is imposed on
the model then14

is
y
= �ks�0�/v0�/T

w0/β
= 0:041: (3.3)

In a world with investment-specific technological progress conventional
measures of capital stocks are flawed since adjusting for quality improve-
ments is difficult. Therefore, measures of �ke/q�/y and �ks/v�/y taken
from NIPA are likely to be unreliable. Nominal investments, however, do
not suffer from this problem so that ie/y and is/y can be measured with
reasonable accuracy.

4. The average age of buildings in the sample is 26 years. Now, recall
that the lure of profits was a central factor in the firm’s replacement deci-
sion. Thus, the returns to scale, as given by αe and αs, should be critical in
determining T . The following restriction on the average age of buildings is
added to the model’s balanced growth path:

1
T

∫ T
0
j dj = T

2
= 26: (3.4)

5. In Section 3.1 it was found that the average ratio of repair and
maintenance to rents in newer buildings is 0.055: This dictates the following
condition on µ�0�:

µ�0� = 0:055× π0�0�v0

ks; 0�0�
: (3.5)

14Repair and maintenance is netted out of GDP in the National Income and Product Ac-
counts. Ideally this should be added back to GDP, because it is a type of investment spending.
Since a series on repair and maintenance for structures was not available this could not be
done here. Some sensitivity analysis showed that for reasonable estimates of repair and main-
tenance the results barely changed.
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6. The estimation results from Section 3.1 show that a 1-year increase
in a building’s age reduces its rent by 1.5%. Recall that the rent gradient
is a measure of obsolescence of structures. Hence, it should provide use-
ful information for calculating γv. Using the rent gradient formula (2.26),
together with (2.21), leads to the last restriction,

γv = −
�1− αe − β�

αs
δs − γy =

�1− αe − β�
αs

× 0:015− γy: (3.6)

Counting establishes that Eqs. (2.10), (2.15), (2.19), (2.22), (2.24), (2.27)–
(2.32), and (3.1)–(3.6) represent a system of 17 equations in the 17 un-
knowns π0�0�, ι, re; 0, γy , γs, T , V �ks; 0�0��, Vks

�ks; 0�0��, πks; 0
�0�, ks; 0�0�,

w0, αe, αs, µ�0�, γv, γz, and ρ. The results will now be reported.

3.3. Findings

Values of 0.10 and 0.15 are found for αe and αs; respectively. This implies
that αe + αs +β = 0:93, so pure rents (before maintenance costs) are about
7% of income. The rate of time preference, ρ, has a value of 0.072. This
yields an interest rate of 8.4%, a number somewhat larger than that of 6.9%
calculated by Cooley and Prescott (1995) for the 1954–1992 period.15 Coo-
ley and Prescott’s (1995) number is probably too low for the purposes here,
though, since they included the value of land in the definition of the phys-
ical capital stock which works to reduce their estimated return on capital.

The rate of technological progress in structures is found to be 1% a
year; that, is, γv = 0:01. Consequently, a forgone unit of consumption can
purchase 1% more efficiency units of structures each year. This is smaller
than the 3.2% estimated for equipment, but casual empiricism suggests that
technological progress has been much less in the building sector. The rate
of neutral technological progress is 0.43%, or γz = 0:0043.

The contribution of each source of technological progress to economic
growth can be calculated using (2.22) as

fq =
αe/�1− αe − αs�γq

γy
= 0:37;

fv =
αs/�1− αe − αs�γv

γy
= 0:15;

and

fz =
1/�1− αe − αs�γz

γy
= 0:48;

15Note that 10% is the interest rate that Taubman and Rasche (1969) used in their study
of office buildings.
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where fq, fv, and fz denote the fractions of output growth that are ac-
counted for by equipment-specific, structure-specific, and neutral techno-
logical progress. As can be seen, structure-specific technological progress
accounts for 15%. Overall investment-specific technological progress, or
technological progress in the capital goods sectors, generates 52% of over-
all growth.

3.3.1. Capital Stock and Depreciation Measures

The numbers in the NIPA data imply that the real stock of structures per
manhour worked grew at an annual rate of 0.75% over the 1959–1996 pe-
riod. The current analysis suggests, on the basis of Eq. (2.21), that it grew at
2.2% over this period. Likewise, the NIPA figures indicate that the annual
growth rate in the stock of equipment per manhour worked was 2.5%. The
estimate obtained from (2.20) is 4.42%. The failure to incorporate tech-
nological progress in the production of new capital goods, or neglecting
the terms q, γq, v, and γv in (2.4), (2.20), (2.5), and (2.21), has significant
consequences for the measurement of the effective capital stock.

The numbers in the NIPA data do not measure physical depreciation,
as is conventionally assumed in macroeconomics. The NIPA measures are
based on straight-line depreciation over the economic service life of an asset
(and not its physical service life). Hotelling [4] introduced the concept of
economic depreciation, defining it to be the rate of decline in the value of
the asset over time. Let 50�j� be the date-0 present value of rents (net of
maintenance costs) for an age-j building until the next replacement date
T − j.16 Now, imagine constructing an annual measure of depreciation.
The annual rate of economic depreciation that transpires between year
0 and year −1 is simply given by �50�j� − 5−1�j − 1��/5−1�j − 1�. The
rate of straight-line depreciation would be �1/T �/�1− �j − 1�/T �; note the
importance of the replacement date, T , in this formula. Table IV gives these
depreciation rates for selected ages of a building. Observe how the rate of
depreciation grows slowly at first and then accelerates rapidly toward the
end of the building’s life.17 Note that the average rates of depreciation,
both economic and straight line, are somewhat higher than the 5.6% used
for structures in the NIPA data.18;19

16That is, 50�j� =
∫ T−j

0 �πt�j + t� − µ�j + t�ks;−j�0�/�v0e
−γvj��e−ιt dt. Assume that at the

time of construction the owner purchases the structure and obtains a lease to the land for T
years. The date-0 cost and benefit of doing this would be 50�0�.

17The rate of economic depreciation is very low early on. Taubman and Rasche (1969)
constructed a similar table to argue that tax laws allowed depreciation allowances that were
too generous, because of this fact.

18Once again, as calculated by Greenwood, Hercowitz, and Krusell (1997).
19A weighted average is used to calculate the mean rates of depreciation in Table IV. The

weights are based on the purchase prices for buildings of various ages.
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TABLE IV

Age (years) Econ. dep. (%) St. line dep. (%) Physical dep. (%)

1 1.89 1.92 0.83
5 1.97 2.08 0.94

15 2.29 2.63 1.30
30 3.55 4.35 2.10
40 6.52 7.69 2.90
50 32.1 33.3 4.00
51 49.1 50.0 4.13
52 100.0 100.0 4.26

Mean dep. 6.63 7.24 1.93

With an additional assumption, the rate of physical depreciation occur-
ring over time can be calculated. Suppose that the stock of structures for an
age-j building follows the law of motion dks�j�/dj = −δ�j�ks�j� + v−jim�j�,
where v−j denotes value that v had j periods ago.20 Here one dollar of
repair and maintenance investment can offset one dollar of depreciation,
where the latter is measured in terms of the original cost of the building.
(Recall that the original cost for a unit of structures was 1/v−j .) Under the
maintained hypothesis that repair and maintenance expenditures exactly
offset physical wear and tear in each and every period it will transpire that
δ�j� = v−jim�j�/ks�j� = v−jim�j�/ks;−j�0� = µ�j�. The physical deprecia-
tion rate is shown in the last column of Table IV. Note that different models
of the depreciation process will lead to different estimates of the rate of
physical depreciation. For a new (one-year-old) building this is 0.8% while
it steadily rises to 4.3% for an old (52-year) structure. Observe that phys-
ical depreciation, measured this way, is considerably less than economic
depreciation.

3.3.2. Statistical Robustness

The analysis hinges on the estimated value for the rent gradient. How
sensitive are the results to this parameter? To answer this question note
that the model defines two mappings 0v and Fv such that γv = 0v�δs� and
fv = Fv�δs�; that is, the model returns values for the rate of structure-
specific technological progress and its contribution to economic growth,
given an estimate for the rent gradient. It turns out that (numerically) these
mappings are monotonically decreasing in δs. In other words, the steeper

20This law of motion only holds when ks�j� < ks;−j�0�; that is, investment in repair and
maintenance cannot be used to augment the scale of the original structure. Also, note that
repair and maintenance in an age-j structure is done using the technology that was developed
j periods ago.
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FIG. 4. Structure-specific technological progress.

the rent gradient is (or the smaller is δs), the faster is the pace of structure-
specific technological progress and the larger is its contribution to growth.
Now, in Bayesian fashion suppose that one has some beliefs about the value
of δs, as summarized by a probability distribution. This will imply some
associated beliefs about the rate of structure-specific technological progress
and its contribution to growth. Specifically, Pr�γv ≥ x� = Pr�δs ≤ 0−1

v �x��
and Pr�fv ≥ x� = Pr�δs ≤ F−1

v �x��. The estimate of the rent gradient is
a normally distributed random variable with mean −0.015 and standard
deviation 0.001. Take this for the belief over δs. Given this belief, what do
the distributions for Pr�γv ≥ x� and Pr�fv ≥ x� look like?

Figures 4 and 5 plot the distributions for Pr�γv ≥ x� and Pr�fv ≥ x�. As
can be seen from Figure 4, the probability that structure-specific techno-
logical progress is greater than 0.50% is very high. But it is almost certainly
true too that it is less than equipment-specific technological progress. Like-
wise, Figure 5 shows the odds that structure-specific progress accounts for
at least 10% of growth are excellent; yet, that it contributes more than 20%
to growth looks remote.

4. CONCLUSION

The analysis here takes a different route to measuring technological
progress than the one typically travelled by growth accountants. Price data
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FIG. 5. Contribution to growth (structure-specific).

are used to shed information on the sources of economic growth. Over the
postwar period, the relative price of equipment has fallen dramatically. This
suggests that there is technological advance in the equipment-producing
sector of the economy. Similarly, rents decline with the age of a building.
Perhaps this is because new buildings embody new and improved technology
in their structures. By casting the analysis in a general equilibrium setting,
a link can be established between the observed rent gradient and the rate
of technological progress in buildings. Likewise, the tie between the de-
cline in the relative price of equipment and equipment-specific technolog-
ical progress is made explicit. Similarly, the connection can be derived, on
the one hand, between the observed data on the average age of structures,
the structures investment-to-GDP ratio, and the equipment investment-to-
GDP ratio and, on the other hand, the implied shares of structures and
equipment in GDP and the interest rate.

The upshot of the analysis is that the rate of structure-specific technolog-
ical progress is about 1% a year. This implies that 15% of economic growth
can be attributed to structure-specific technological progress. Given that it
is also found that equipment-specific technological progress accounts for
37% of growth, the conclusion is that about 52% of economic growth is
due to technological progress embodied in the form of new capital goods.

The National Income and Product Accounts compute the rate of eco-
nomic depreciation for capital goods, rather than the rate of physical depre-
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ciation as is typically assumed. The current analysis assumes that structures
are kept in good condition through repair and maintenance. This assump-
tion may not be that unrealistic. Building codes, for instance, regulate the
condition of business structures. Due to technological progress buildings
eventually become obsolete, however, and are replaced. The model gener-
ated a rate of economic depreciation of about 6.6%, not far from the 5.6%
used in the NIPA. Physical depreciation is estimated to be 1.9%. Future
work may be better able to decompose the rate of economic depreciation
into the rate of obsolescence and the rate of physical depreciation.
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