# Quantifying the Impact of Financial Development on Economic Development

Jeremy Greenwood, Juan M. Sanchez and Cheng Wang

Lecture Notes

# 1 Introduction

- The efficiency of financial intermediation affects economic development through *capital deepening* and the *reallocation* of labor and capital.
- Illustrated by the cross-country relationship between
  - interest-rate spreads
  - capital-to-output ratios and TFPs



Figure 1: Capital Deepening



Figure 2: Reallocation

## 1.1 U.S. and Taiwan



Interest-Rate Spreads and Capital/Output Ratios

## 1.2 Theory

- Costly State Verification Model a la Townsend (1979) and Williamson (1986)
- Two twists
  - Efficiency of Monitoring
    - \* Depends upon resources devoted to it
    - \* Depends upon efficiency in financial sector
  - Ex ante firm heterogeneity in risk and return
- Financial theory of firm size emerges

- Technological progress in the financial sector leads to capital *deepening* and *reallocation* 
  - Balanced growth
  - Unbalanced growth

#### **1.2.1** Four ingredients:

- 1. Output is produced by firms using capital and labor.
  - (a) Capital must be raised externally.
  - (b) Distribution of idiosyncratic returns for each firm.
    - Realized state is private information.
  - (c) There is a distribution over firms of these distributions in returns.

- 2. Production is governed by constant returns to scale.
  - (a) No informational frictions.
    - i. No rents will be earned.
    - ii. Only projects with the highest expected return will be funded.
  - (b) With informational frictions.
    - i. Inefficient projects are funded.
    - ii. Rents are earned.

- 3. Competitive intermediation.
  - (a) Lending contracts between intermediaries and firms.
    - Value of firms maximized-intermediaries earn zero profits.
  - (b) Intermediaries monitor firms.
    - Costly state verification model.
    - Degree of vigilance is flexible.
      - Loan size is determinate.
      - Simple threshold rule for funding.
      - Funding increasing in expected return, decreasing in variance.

- 4. Technological improvement in the monitoring technology.
  - (a) Intermediation becomes more efficient.
  - (b) Rents are squeezed.
  - (c) Funds redirected toward more efficient firms.

## **1.3 Quantitative Analysis**

- Model calibrated to U.S. data
  - Firm-size distribution, output, interest-rate spreads
- U.S. and Taiwan
  - 30% of U.S. growth
  - 45% of Taiwanese growth

- Cross-Country Analysis-45 countries
  - Uganda
    - $\ast\,$  financial best practice could raise output by 116% and TFP by 23%
  - World
    - \* financial best practice could raise output by 53%
  - Bulk of variation in world output (69%) is *not* explained by financial factors

# 2 Firms

• Produce output,

$$o = x\theta k^{\alpha}l^{1-\alpha}.$$

- 
$$\theta \in \{\theta_1, \theta_2\}$$
, with  $\theta_2 > \theta_1$ .

- 
$$\pi_1 = \mathsf{Pr}(\theta = \theta_1)$$
 and  $\pi_2 = 1 - \pi_1 = \mathsf{Pr}(\theta = \theta_2)$ .

- realization is private information.
- $-\tau = (\theta_1, \theta_2)$ , is the firm's publicly observable type.
- $\mathcal{T}$ , space of firm types.
- $\tau \sim F : \mathcal{T} \rightarrow [0, 1].$

–  $\boldsymbol{x}$  is a country-specific level of TFP



## The F distribution – in mean/variance space

## **3** Intermediaries

Borrow from consumers and lend to firms.

- k, size of loan to firm (capital).
- p's, payments from firm to intermediary
- $\theta_j$ , state reported by firm.
- $\theta_i$ , true state realized by firm.
- $m_j$ , resources devoted to monitoring a claim of state j.

## 3.1 Monitoring Technology

- $P_{ij}(m_j/k)$ , probability that the firm is caught *cheating* (for  $i \neq j$ ) when:
  - true realization of productivity is  $\theta_i$ ;
  - firm makes a *false* report of  $\theta_j \neq \theta_i$ ;
  - $P_{ij}$  is increasing in  $m_j/k$ .

$$\underbrace{1 - P_{ij}(m_j/k)}_{\text{Odds not caught}} = (\epsilon m_j/k)^{-\psi}, \text{ with } 0 < \psi < 1.$$

• C(m/z; w), cost function associated with monitoring

$$C(m/z;w)=w(m/z)^{\gamma}$$
, with  $\gamma>1.$ 

- w, wage rate for labor.
- -z, productivity.

## 4 Contracting Problem

## 4.1 Notation

- v, outside value of the firm.
- $\widetilde{r}$ , cost of capital for the intermediary.
  - return to savers plus capital consumption.
- $r_i$ , internal return on firm's capital in state i.

$$r_i k = R(\theta, x, w) k \equiv \max_l \{ x \theta k^{\alpha} l^{1-\alpha} - w l \}.$$

## 4.2 Intermediary's Problem

$$\begin{split} I(\tau,v) &\equiv \max_{\substack{p_1,p_2,p_{12},p_{21}, \\ m_1,m_2,k}} \underbrace{\{\pi_1 p_1 + \pi_2 p_2 - \tilde{r}k - \pi_1 w (m_1/z)^{\gamma} - \pi_2 w (m_2/z)^{\gamma}\}}_{\text{Intermediary's profits}} \}, \\ \text{subject to} \\ p_1 &\leq r_1 k, \quad p_2 \leq r_2 k, \quad \underbrace{p_{12} \leq r_1 k}_{\text{caught cheating}}, \quad \underbrace{p_{21} \leq r_2 k}_{\text{caught cheating}}, \quad (\text{limited liability}) \end{split}$$

$$\underbrace{[1 - P_{21}(m_1/k)](r_2k - p_1)}_{\text{not caught}} + \underbrace{P_{21}(m_1/k)(r_2k - p_{21})}_{\text{caught}} \leq \underbrace{r_2k - p_2}_{r_2k - p_2},$$

$$(\text{incentive constraint} - \text{good state, 2})$$

$$\pi_1(r_1k - p_1) + \pi_2(r_2k - p_2) = v. \quad (\text{promise keeping})$$

## 4.3 The Contract

#### 1. Payment schedule

(a) take everything upon report of bad state or when caught cheating  $p_1 = r_1 k$  (not caught cheating),  $p_{21} = r_2 k$  (caught cheating).

(b) payment in good state yields expected return of  $\boldsymbol{v}$ 

$$p_2 = r_2 k - v/\pi_2.$$

• I.e.,

$$\underbrace{\pi_2(r_2k-p_2)}_{\text{expected rents, good state}} = \underbrace{v}_{\text{outside option}}.$$

2. Loan size, k



3. *Monitoring* – only in bad state

$$I(\tau, v) \equiv \max_{m_1/k} \{\underbrace{(\pi_1 r_1 + \pi_2 r_2 - \tilde{r})k}_{\text{net return on capital}} - \underbrace{\frac{\pi_1 w}{z^{\gamma}} k^{\gamma} (\frac{m_1}{k})^{\gamma}}_{\text{monitoring cost}} - \underbrace{\underbrace{v}_{\text{payment to firm}}}_{\text{payment to firm}} \},$$

where k is given above.

# **5** Competitive Intermediation

- Perfect competition among intermediaries
  - Contract maximizes value of the firm, v.
  - Intermediary makes zero profits, for each type of loan  $\tau$ .
- Intermediary's profit function is  $\cap$ -shaped in v.
- Threshold rule for project funding

$$\underbrace{\mathcal{A}(w)}_{\text{set of funded projects}} = \{\tau : \underbrace{\pi_1 r_1 + \pi_2 r_2}_{\text{expected return}} - \widetilde{r} > 0\} \text{ or } \{\tau : w < \underbrace{\overline{W}(\tau)}_{\text{threshold wage}} \}.$$



Figure 3: The profit function,  $I(\tau, v)$ . Also shows the mpact of an increase in w and z on profits

# 6 Technological Progress

Examine two special cases:

(i) balanced growth,

(ii) efficient finance.



Figure 4: Determination of Firm Size

#### 6.1 Balanced Growth

- $\theta_i$ 's grow at the common rate g.
- z grows at rate  $g^{1/(1-\alpha)}$ .

**Proposition**. (Balanced Growth). Along a balanced growth path:

(i) The capital stock, k, wages, w, and rents, v, will grow at rate  $g^{1/(1-\alpha)}$ ;

(ii) The active set shifts northeast [in  $(\theta_1, \theta_2)$ -space ] at rate g;

(iii) Monitoring per unit of capital,  $m_1/k$ , will remain constant.

**Proposition**. (Technological progress in financial intermediation). Take two z's with

$$z < z'$$
.

Then:

(i)

$$A(w') \sqsubset \mathcal{A}(w),$$

where w = W(z) < w' = W(z').

(ii) Consider  $\tau$  and  $\tau'$  such that  $\tau = (\theta_1, \theta_2) \in \underbrace{\mathcal{A}(w) - \mathcal{A}(w')}_{\text{set of cut projects}} \text{ and } \tau' = (\theta'_1, \theta'_2) \in \underbrace{\mathcal{A}(w')}_{\text{retained projects}}$ 

It follows that

$$\pi_1(\theta_1)^{1/\alpha} + \pi_2(\theta_2)^{1/\alpha} < \pi_1(\theta_1')^{1/\alpha} + \pi_2(\theta_2')^{1/\alpha}.$$

**Proposition**. (Efficient finance). Let  $z \to \infty$ . Then,

1. 
$$\lim_{z \to \infty} m_1/k = \infty$$
 and  $\lim_{z \to \infty} P_{21}(m_i/k) = 1$ ,

2. 
$$\lim_{z \to \infty} p_2 = r_2 k$$
 and  $\lim_{z \to \infty} v = 0$ ,

3. 
$$\lim_{z \to \infty} \mathcal{A}(w) = \mathcal{A}^* \equiv \arg\max[\pi_1(\theta_1)^{1/\alpha} + \pi_2(\theta_2)^{1/\alpha}],$$

4.  $\lim_{z\to\infty} \int_{\mathcal{A}(w)} k dF = k^*$  (k\*, capital stock in the neoclassical growth.)

# 7 Calibration

- Model fit to U.S. economy
- Standard parameters given standard values
- Other parameters picked to minimize the distance between model and some data targets
- Data Targets, 1974 and 2004
  - 1. Establishments size distribution for firms
  - 2. Interest-rate spread,  $\mathbf{s},$  and output,  $\mathbf{o}$

## 7.1 Minimization Routine

 $p = (\epsilon, \psi, \gamma, \sigma_{\theta_1}^2, \sigma_{\theta_2}^2, \rho)$ , parameter vector.

$$\mu_{\theta i} = E[\ln \theta_i], \ \sigma_{\theta_i}^2 = E[\ln \theta_i^2] - E[\ln \theta_i]^2$$

 $\rho = \text{correlation between } \ln(\theta_1) \text{ and } \ln(\theta_2)$ 

$$\min_{p} \left\{ \sum_{j=1}^{7} \frac{w_{j}}{2} [e_{j,74}^{\text{Data}} - M_{j} \left( x_{74}^{US}, z_{74}^{US}, p \right)]^{2} + \sum_{j} \frac{w_{j}}{2} [e_{j,04}^{US} - M_{j} \left( x_{04}^{US}, z_{04}^{US}, p \right)]^{2} \right\},$$

Firm-Size Distribution-deviations, data and model

subject to

• Match observed output and interest-rate spreads

$$(\mathbf{o}_{74}^{US}, \mathbf{s}_{74}^{US}) = O(x_{74}^{US}, z_{74}^{US}; p),$$

 $\mathsf{and}$ 

$$(\mathbf{o}_{04}^{US}, \mathbf{s}_{04}^{US}) = O(x_{04}^{US}, z_{04}^{US}; p).$$



Figure 5: Establishments

## 8 U.S. and Taiwan

## 8.1 U.S.–Balanced Growth

- Balanced Growth between 1974 and 2004
  - Firm-size distribution, small change.
  - Interest-rate spread, modest decline.
  - Capital/output ratio, small increase.

- Technological Improvement in the financial sector
  - Model, 2.6 percent a year
  - Data, 2.2 percent a year (Berger, 2003)
  - Contribution to growth, 1/3
    - \* Economy in 2004 with  $z_{1974}$

| The U.S. Economy                                           |          |          |
|------------------------------------------------------------|----------|----------|
|                                                            | Data     | Model    |
| 1974                                                       |          |          |
| Spread, s                                                  | 3.07%    | 3.07%    |
| GDP (per capita), o                                        | \$22,352 | \$22,352 |
| capital-to-output ratio (indexed), ${f k}/{f o}$           | 1.00     | 1.00     |
| TFP                                                        |          | 6.17     |
| 2004                                                       |          |          |
| Spread, s                                                  | 2.62%    | 2.62%    |
| GDP (per capita), o                                        | \$41,208 | \$41,208 |
| capital-to-output ratio (indexed), ${f k}/{f o}$           | 1.02     | 1.09     |
| TFP                                                        |          | 8.92     |
| 2004 Counterfactual, $z_{2004}^{US} = z_{1974}^{US}$       |          |          |
| Spread, s                                                  | 2.62     | 3.93     |
| GDP (per capita), o                                        | \$41,208 | \$34,530 |
| capital-to-output ratio (indexed), $\mathbf{k}/\mathbf{o}$ | 1.02     | 0.87     |
| TFP                                                        |          | 8.59     |
|                                                            |          |          |

| Yearly growth in | financial productivity | 2.58% |
|------------------|------------------------|-------|
|                  |                        |       |

## 8.2 Taiwan–Unbalanced Growth

- Unbalanced growth between 1974 and 2004
  - Interest-rate spread, large drop
  - Capital/output ratio, large increase
- Technological Improvement in the financial sector
  - Model, 10% a year
  - Contribution to growth, 45%

| The Taiwan Economy                             |          |          |
|------------------------------------------------|----------|----------|
|                                                | Data     | Model    |
| 1974                                           |          |          |
| Spread, s                                      | 5.41%    | 5.41%    |
| GDP (per capita), o                            | \$2,211  | \$2,211  |
| capital-to-output(indexed), $k/o$              | 1.00     | 1.00     |
| TFP                                            |          | 1.55     |
| 2004                                           |          |          |
| Spread, s                                      | 1.96%    | 1.96%    |
| GDP (per capita), o                            | \$13,924 | \$13,924 |
| capital-to-output(indexed), $k/o$              | 1.847    | 1.76     |
| TFP                                            |          | 4.20     |
| 2004 Counterfactual, $z_{2004}^T = z_{1074}^T$ |          |          |
| Spread, s                                      | 1.96%    | 10.43%   |
| GDP (per capita), o                            | \$13,924 | \$6,176  |
| capital-to-output(indexed), $k/o$              | 1.847    | 0.62     |
| TFP                                            |          | 3.57     |
|                                                |          |          |

| Yearly growth in | n financial | productivity | 9.90% |
|------------------|-------------|--------------|-------|
|------------------|-------------|--------------|-------|

## 9 Cross-Country Analysis

- Take model calibrated to the U.S. economy.
- Make an inference about x and z given an observation on o and s, using

$$(x,z) = O^{-1}(\mathbf{o},\mathbf{s}).$$

• Do this for a sample of 45 countries.

## 9.1 How Reasonable is z?

 In z correlates well the the Beck at al measure of efficiency in the financial sector

| Cross-Country Evidence |                                          |  |
|------------------------|------------------------------------------|--|
|                        | In <i>z</i> with Beck et al (2000, 2001) |  |
| Corr(model, data)      | 0.80                                     |  |

• In z correlates well with measures of IT use, overhead costs, human capital and rule of law



## 9.2 Financial Development and Firm Size

- Firms should be larger in countries with better developed financial systems
  - Beck, Demirgüç-Kunt, and Maksimovic (2006)
  - Run regression of firm size on spreads

 $ln(size) = constant + \eta \times spread + \iota \times controls.$ 

|                                          | Data  | Model |
|------------------------------------------|-------|-------|
| Interest-rate spread coefficient, $\eta$ | -22.4 | -16.6 |
| Standard error for $\eta$                | 2.35  | 6.55  |
| Number of country observations           | 27    | 27    |
| $R^2$                                    | 0.80  | 0.54  |

- Coefficient on spread
  - Reduce interest rate spread from 10 percentage points to 1 percentage point
  - Go from worst 5 percent of countries to top 5 percent of countries
  - Average size of top 100 firms would rise by 154%
  - Beck et al: If Turkey moved to South Korea then interest-rate spreads output of top 100 firms would double

## 9.3 Idiosyncratic Distortions

- Restuccia and Rogerson (2008)
  - Idiosyncratic distortions across firms can generate large TFP differences (30 to 50 percent)
  - Information frictions put a distortion, d, in investment decision

$$d = \pi_1 r_1 + \pi_2 r_2 - \widetilde{r}$$

 Mean variance of the distortion are much larger in countries with less developed financial system



Figure 6: The distribution of distortions across establishments for the Luxembourg and Uganda-the model

#### 9.4 How much does Financial Development Matter?

- Best financial practice,  $\overline{z} = \max\{z_i\}$ .
- Best industrial practice,  $\overline{x} = \max\{x_i\}$ .
- Country *i*'s output (per worker),  $O(x_i, z_i)$ .
- Country *i*'s output with best financial practice,  $O(x_i, \overline{z})$ .
- Output with best practice in both sectors,  $O(\overline{x}, \overline{z})$ .
- Gap in output,  $O(\overline{x}, \overline{z}) O(x_i, z_i)$ .

World-Wide Move to Best Financial Practice,  $\overline{z}$ 

| Increase in world output (per worker) | 53.3%         |
|---------------------------------------|---------------|
| Reduction in output gap               | 30.8%         |
| Increase in world TFP                 | 13.5%         |
| Fall in dispersion of In(output)      | 22.8 perc pts |
| Fall in mean of distortion            | 14.7 perc pts |
| Fall in mean dispersion of distortion | 9.5 perc pts  |



## 9.5 Robustness Analysis–Alternative Matching Strategies

| World-Wide Move to Best Financial Practice, $\overline{z}$ |                      |                         |               |
|------------------------------------------------------------|----------------------|-------------------------|---------------|
|                                                            | Matching Methodology |                         |               |
|                                                            | S                    | $\mathbf{k}/\mathbf{o}$ | $\phi$        |
| Increase in world output                                   | 53.2%                | 48.2%                   | 52.1%         |
| Reduction in output gap                                    | 30.8%                | 25.6%                   | 37.0%         |
| Increase in world TFP                                      | 13.5%                | 14.3%                   | 13.1%         |
| Fall in dispersion of In(output)                           | 22.8 perc pts        | 32.8 perc pts           | 13.8 perc pts |



# 10 Conclusions

- Explore the link between financial intermediation and economic development
- Embed a costly-state-verification paradigm into the standard growth model
- Firm-size distribution depends on financial development
- Balanced growth path
  - Interest-rate spread, capital-to-output, and firm size constant

- Unbalanced growth
  - Rents get squeezed
  - Interest-rate spreads narrow
  - Reallocation of funds toward the most profitable firms
  - Capital/output ratios and TFP rise
- Mechanism has quantitative significance
  - Relationship between firm size and financial development is similar in the model and data
  - Wedges created by financial frictions resemble idiosyncratic distortions in Restuccia and Rogerson (2008)

- Improvements in intermediation are important for growth in the US and Taiwan
- Differences in financial development are important across countries
  - Move to best practice
    - $\ast\,$  Uganda–financial best practice could raise output by 116% and TFP by 23%
    - \* Ireland–financial best practive could rise output by 11% and TFP by 2%
    - \* World TFP would increase by 13.5%
    - \* World output would increase by 53%